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1. Introduction 

In embedded systems development, engineers are concerned with both software and 
hardware aspects of the system. Once the design specifications of a system are clearly 
defined and converted into appropriate design elements, the system implementation 
process can take place by translating those designs into software and hardware components. 
People working on the development of embedded systems are often concerned with the 
software implementation of the system in which the system specifications are converted into 
an executable system (Sommerville, 2007; Koch, 1999). For example, Koch interpreted the 
implementation of a system as the way in which the software program is arranged to meet 
the system specifications. 

Having decided on the software architecture of the embedded design, the first key decision 
to be made in the implementation stage is the choice of programming language to 
implement the embedded software (including the scheduler code, for example). The choice 
of programming language is an important design consideration as it plays a significant role 
in reducing the total development time (Grogono, 1999) (as well as the complexity and thus 
maintainability and expandability of the software). 

This chapter is intended to be a useful reference on "computer programming languages" in 
general and on "embedded programming languages" in particular. The chapter provides a 
review of (almost) all common programming languages used in computer science and real-
time embedded systems. The chapter then discusses the key challenges faced by an 
embedded systems developer to select a suitable programming language for their design 
and provides a detailed comparison between the available languages. A detailed literature 
review of the work done in this area is also provided. The chapter also provides real data 
which shows that – among the wide range of available choices – “C” remains the most 
popular language for use in the programming of real-time, resource-constrained embedded 
systems. The key features of “C” which made it so popular are provided in a great detail.  
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The chapter is organized as follows. Section  2 provides various definitions of the term 
“programming language” from a wide range of well-known references. Section  3 and 
Section  4 provide classification and history of programming languages (respectively). 
Section  5 provides a review of programming languages used in the fields of real-time 
embedded systems. Section  6 discusses the choice of programming languages for embedded 
designs. Section  7 and Section  8 provide the main advantages of “C” which made it the most 
popular language to use in real-time, resource-constrained embedded systems and a 
detailed comparison with alternative languages (respectively). Real data which shows the 
prevalence of “C” against other available languages is also provided in Section  8. Section  9 
presents a brief literature review of using “C” to implement software for real-time 
embedded systems. The overall chapter conclusions are drawn in Section  10. 

2. What is a programming language? 

Simply, programming as a problem has only arisen since computer machines were first 

created. The magnitude of the problem is however relative to the size (and complexity) of 

the computer machine used (Cook, 1999). To program a computer system, a programming 

language is required. The latter is seen as the major way of communication (interface) 

between a person who has a problem and the computer system used to solve the problem.  

Programming language has been defined in several ways. For example, American Standard 

Vocabulary for Information Processing (ANSVIP, 1970) defined a programming language as 

“A language used to prepare computer programs”. The IFIP-ICC Vocabulary of Information 

Processing (IFIP-ICC, 1966) defined it as “A general term for a defined set of symbolic and 

rules or conventions governing the manner and sequence in which the symbols may be 

combined into a meaningful communication”. The IFIP-ICC glossary also noted that “An 

unambiguous language, intended for expressing programs, is called a PROGRAMMING 

LANGUAGE”. Other definitions for a programming language include: 

 “A computer tool that allows a programmer to write commands in a format that is more 
easily understood or remembered by a person, and in such a way that they can be 
translated into codes that the computer can understand and execute.” (Budlong, 1999). 

 “An artificial language for expressing programs.” (ISO, 2001). 

 “A self-consistent notation for the precise description of computer programs” (Wizitt, 
2001). 

  “A standard which specifies how (sort of) human readable text is run on a computer.” 
(Sanders, 2007). 

  “A precise artificial language for writing programs which can be automatically 
translated into machine language.” (Holyer, 2008). 

However, it was noted elsewhere (e.g. Sammet, 1969) that standard definitions are usually 
too general as they do not reflect the language usage. A more specific definition for a 
programming language was given by Sammet as a set of characters and rules (used to 
combine the characters) that have the following characteristics: 

 A programming language requires no knowledge of the machine code by the 
programmer, thus the programmer can write a program without much knowledge 
about the physical characteristics of the machine on which the program is to be run.  
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 A programming language should be machine independent. 

 When a program written in a programming language is translated into the machine 
code, each statement should explode to generate a large set of machine instructions. 

 A programming language must have problem-oriented notations which are closer to 
the specific problem intended to be solved. 

It is worth mentioning that a vast number of different programming languages have already 
been created, and new languages are still being created. 

3. Classification of programming languages 

This section provides a classification of programming languages. Sources for this section 
include (Sammet, 1969; Booch, 1991; Grogono, 1999; Lambert & Osborne, 2000; Mitchell, 
2003; Calgary, 2005; Davidgould, 2008; Network Dictionary, 2008). 

In general, programming languages can be divided into programming paradigms and 
classified by their intended domain of use. Paradigms include procedural programming, 
object-oriented (O-O) programming, functional programming, and logic programming. 
Note that some languages combine multiple paradigms. Each of these paradigms is briefly 
introduced here.  

Procedural programming (or imperative programming) is based on the concept of 
decomposing the program into a set of procedures (i.e. series of computational steps). 
Examples of procedural languages are: FORTRAN (FORmula TRANslator), Algol 
(ALGOrithmic Language), COBOL (COmmon Business Oriented Language), PL/I 
(Programming Language I), Pascal, BASIC (Beginner's All-purpose Symbolic Instruction 
Code), Modula-2, “C” and Ada. Object-Oriented (O-O) programming is a method where the 
program is organized as cooperative collections of “objects”. This style of programming was 
not commonly used in software application development until the early 1990s, but 
nowadays most of the modern programming languages support this type of programming 
paradigm. Examples of object-oriented languages are: Simula, Smaltalk, C++, Eiffel and 
Java. Functional programming treats computation as the evaluation of mathematical 
functions. In functional programming, a high order function can take another function as a 
parameter or returns a function. An example of functional languages is LISP (LISt 
Processor). Finally, logic programming uses mathematical logic in which the program 
enables the computer to reason logically. An example of logic languages is Prolog 
(PROgramming in LOGic). It is often argued that languages with support for an O-O 
programming style have advantages over those from earlier generations (Pont, 2003). For 
example, Jalote (1997) noted that using O-O helps to represent the problem domain, which 
makes it easier to produce and understand designs. 

In addition to programming paradigm, the purpose of use is an important characteristic of a 

language: it is unlikely to see one language fitting all needs for all purposes (Sammet, 1969). 

Programming languages can be divided, according to their purpose, into general-purpose 

languages, system programming languages, scripting languages, domain-specific 

languages, and concurrent / distributed languages (or a combination of these). A general-

purpose language is a type of programming language that is capable of creating various 

types of programs for various applications, e.g. “C” language. There has been an argument 

that some of the general-purpose languages were designed mainly for educational purposes 
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(Wirth, 1993). A system programming language is a language used to produce software 

which services the computer hardware rather than the user, e.g. Assembly and Embedded 

C. Scripting language is a language in which programs are a series of commands that are 

interpreted and then executed sequentially at run-time without compilation, e.g. JavaScript 

(used for web page design). Domain-specific programming languages are, in contrast to 

general-purpose languages, designed for a specific kind of tasks, e.g. Csound (used to create 

audio files), and GraphViz (used to create visual representations of directed graphs). 

Concurrent languages are programming languages that have abstractions for writing 

concurrent programs. A concurrent program is the program that can execute multiple tasks 

simultaneously, where these tasks can be in the form of separate programs or a set of 

processes or threads created by a single program. Concurrent programming can support 

distributed computing, message passing or shared resources. Examples of concurrent 

programming languages include Java, Eiffel and Ada. 

In his famous book (i.e. “Programming Languages: History and Fundamentals”, 1969), Jean 
E. Sammet used the following set of defining categories as a way of classifying 
programming languages: 1) procedural and non-procedural languages; 2) problem-oriented, 
application-oriented and special purpose languages; 3) problem-defining, problem 
describing and problem solving languages; 4) hardware, publication and reference 
languages. Sammet however underlined that any programming language can fall into more 
than one of these categories simultaneously: for further details see Sammet (1969). 

4. History of programming languages 

It has been argued that studying the history of programming languages is essential as it 
helps developers avoid previously-committed mistakes in the development of new 
languages (Wilson & Clark, 2000). It was also pointed out that an unfortunate trend in 
Computer Science is creating new language features without carefully studying previous 
work in this field (Grogono, 1999). Most books and articles on the history of programming 
languages tend to discuss languages in terms of generations where languages are classified 
by age (Cook, 1999). Many articles and books have discussed the generations of 
programming languages (e.g. Wexelblat, 1981; Martin & Leben, 1986; Watson, 1989; Zuse, 
1995; Flynn, 2001). Pont (2003) provides a list of widely-used programming languages 
classified according to their generations (see Table 1). 

 

Language generation Example languages 

- 
First generation language (1GL) 
Second generation languages (2GL) 
Third generation languages (3GL) “process-oriented’ 
Fourth generation languages (4GL) ‘object-oriented’ 

Machine code 
Assembly  
COBOL, FORTRAN 
C, Pascal, Ada 83 
C++, Java, Ada 95 

Table 1. Classification of programming languages by generations (Pont, 2003). 

A brief history of the most popular programming languages (including the ones presented 
in Table 1) is provided in this section. Sources for the following material mainly include 
(Wexelblat, 1981; Martin & Leben, 1986; Watson, 1989; Halang & Stoyenko, 1990; Grogono, 
1999; Flynn, 2001).  
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In the 1940s, the first electrically powered digital computers were created. The computers of 
the early 1950s used machine language which was quickly superseded by a second 
generation of programming languages known as Assembly languages. The limitations in 
resources (e.g. computer speed and memory space) enforced programmers to write their 
hand-tuned assembly programs. However, it was shortly realized that programming in 
assembly required a great deal of intellectual effort and was prone to error. It is important to 
note that although many people consider Assembly as a standard programming language, 
some others believe it is too low-level to bring satisfactory of communication for user, hence 
was excluded from the programming languages list (Sammet, 1969). 

1950s saw the development of a range of high-level programming languages (some of which 
are still in widespread use), e.g. FORTRAN, LISP, and COBOL, and other languages such as 
Algol 60 that had a substantial influence on most of the lately developed programming 
languages. In 1960s, languages such as APL (A Programming Language), Simula, BASIC 
and PL/I were developed. PL/I incorporated the best ideas from FORTRAN and COBOL. 
Simula is considered to be the first language designed to support O-O programming. 

The period between late 1960s and late 1970s brought a great prosperity to programming 
languages most of which are used nowadays. In the mid-1970s, Smalltalk was introduced 
with a complete design of an O-O language. The programming language “C” was 
developed between 1969 and 1973 as a systems programming language, and remained 
popular. In 1972, Prolog was designed as the first logic programming language. In 1978, ML 
(Meta-Language) was developed to found statically-typed functional programming 
languages in which type checking is performed during compile-time allowing more efficient 
program execution. It is important to highlight that each of these languages originated an 
entire family of descendants. Some other key languages which were developed in this 
period include: Pascal, Forth and SQL (Structured Query Language). 

In 1980s, C++ was developed as a combined O-O and systems programming language. 
Around the same time, Ada was developed and standardized by the United States 
government as a systems programming language intended for use in defense systems. One 
noticeable tendency of language design during the 1980s was the increased focus on 
programming large-scale systems through the use of modules, or large-scale organizational 
units of code. Therefore, languages such as Modula-2, Ada, and ML were all extended to 
support such modular programming in 1980s. Some other languages that were developed in 
this period include: Eiffel, PEARL (Practical Extraction and Report Language) and FL 
(Function Level). 

In mid-1990s, the rapid growth of the Internet created opportunities for new languages to 

emerge. For example, PEARL (which is originally a Unix scripting tool first released in 1987) 

became widely adopted in dynamic web sites design. Another example is Java which was 

commonly used in server-side programming. These language developments provided no 

fundamental novelty: instead, they were modified versions of existing languages and 

paradigms and largely based on the “C” family of programming languages. 

It is difficult to determine which programming languages are most widely used, as there 
have been various ways to measure language popularity (see O'Reilly, 2006; Bieman & 
Murdock, 2001). Mostly, languages tend to be popular in particular types of applications. 
For example, COBOL is a leading language in business applications (Carr & Kizior, 2000), 
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FORTRAN is widely used in engineering and science applications (Chapman, 2004), and 
“C” is a genuine language for programming embedded applications and operating systems 
(Barr, 1999; Pont, 2002; Liberty & Jones, 2004). 

5. Programming languages for real-time embedded systems 

To develop a real-time embedded system, a number of tools and techniques would be 
required: the key one is the programming language used to develop the application code 
(Burns, 2006). Assembly was the first programming language used to implement the 
software for embedded applications. However, it was argued that the development 
environments that used the first generation languages such as Assembly lacked the basic 
support for debugging and testing (Halang & Stoyenko, 1990). Therefore, in 1960s, the need 
for high-level programming languages to program real-time systems, instead of continuing 
to use Assembly language, was agreed among many real-time system designers; due to 
advantages such as ease of learning, programming, understanding, debugging, maintaining 
and documenting and also code portability (see Boulton & Reid, 1969; Sammet, 1969). 

The work in this area began by identifying the essential requirements for a high-level 
language to fulfill the objectives of real-time applications (Opler, 1966). Such requirements 
were summarized by Boulton & Reid (1969) as methods of handling real-time signals and 
interrupts, and methods of scheduling real-time tasks. Opler (1966) argued that to achieve 
such requirements, one can make extensions / modifications to an existing programming 
language, where an alternative solution is to develop new languages dedicated specifically 
for real-time software. Some success, in extending existing languages to real-time 
computing, was achieved using languages such as FORTRAN (e.g. Jarvis, 1968; Roberts, 
1968; Hohmeyer, 1968; Mensh & Diehl, 1968; Kircher & Turner, 1968) and PL/I (e.g. Boulton 
& Reid, 1969). Some other studies, however, attempted to develop new real-time languages 
but with some similarity to existing languages, e.g. PROSPRO (Bates, 1968), SPL (Oerter, 
1968) and RTL (Schoeffler & Temple, 1970). 

In 1970s, a major concern of many researchers became the programming of real-time 

applications which involve concurrent processing. Useful work in this area demonstrated 

that, same as before, concurrent programming can be achieved by either extending available 

general-purpose languages (e.g. Hansen, 1975; Wirth, 1977) or developing entirely new 

concurrent-processing languages (e.g. Schutz, 1979). However, it was noticed that extended 

general-purpose languages still lacked genuine concurrency and real-time concepts 

(Steusloff, 1984). This led to the development of more efficient concurrent real-time 

languages such as PEARL (DIN, 1979), ILIAD (Schutz, 1979) and Ada (Ada, 1980). 

Ada is a well-designed and widely used language for implementing real-time systems 
(Burns, 2006). Therefore, it is worth discussing it in greater detail. As previously noted, Ada 
is an object-oriented, high-level programming language which was first developed and 
adopted by the U.S. Department of Defense (DoD) to implement various defense mission-
critical software applications (Ada, 1980; Baker & Shaw, 1989). Ada appeared as a standard 
language in 1983 – when Ada83 was released – and was later reviewed and improved in 
1995 by producing Ada95. Since developed, Ada has gained a great deal of interest by many 
real-time and embedded systems developers (e.g. see Real-Time Systems (RTS) Group 
webpage, The University of York, UK). It was declared that Ada embodies features which 

www.intechopen.com



Choosing Appropriate Programming Language  
to Implement Software for Real-Time Resource-Constrained Embedded Systems 

 

329 

facilitate the achievement of safety, reliability and predictability in the system behavior 
(Halang & Stoyenko, 1990). Halang & Stoyenko (1990) carried out a detailed survey on a 
number of representative real-time programming languages including Ada, FORTRAN, 
HALL/S, LTR, PEARL, PL/I and Euclid, and concluded that Ada and PEARL were the 
most widely available and used languages among the others which had been surveyed. 

In addition to the previous sets of modified and specialized real-time languages, it was 

accepted that universal, procedural programming languages (such as C) can also be used for 

real-time programming although they contain just rudimentary real-time features: this is 

mainly because such languages are more popular and widely available than genuine real-

time languages (Halang & Stoyenko, 1990). Later generations of O-O languages such as C++ 

and Java also have popularity in embedded programming (Fisher et al., 2004). Embedded 

versions of famous “.Net” languages are gaining more popularity in the field of embedded 

systems development. However, they are not a favorite choice when it comes to resource 

constrained embedded systems as they are O-O languages, hence, they require a lot of 

resources as compared to the requirements of “C”. 

6. Choosing a suitable programming language for embedded design 

In real-time embedded systems development, the choice of programming language is an 
important design consideration since it plays a significant role in reducing the total 
development time (Grogono, 1999). 

Overall, it has been widely accepted that the low-level Assembly language suffers high 

development costs and lack of code portability, and only very few highly-skilled Assembly 

programmers can be found today (see Barr, 1999; Walls, 2005). If the decision is therefore 

made not to use the Assembly language due to its inevitable drawbacks, there is no scientific 

way to select the most optimal high-level programming language for a particular 

application (Sammet, 1969; Pont, 2002). Instead, researchers tend to discuss the important 

factors which should be considered in the choice of a language. For example, Sammet (1969) 

indicated that a major factor in selecting a language is the language suitability to solve the 

particular classes of problems for which it is intended, and the type of the actual user (i.e. 

user level of professionalism). It has also been noted by Sammet that factors such as 

availability on the desired computer hardware, history and previous evaluation, 

implementation consequences of the language are also key factors to take into account 

during the language selection process. However, Sammet stressed that a successful choice 

can only be made if the language includes the required technical features. 

Specifically, when choosing a language for embedded systems development, the following 
factors must be considered (Pont, 2003):  

 Embedded processors normally have limited speed and memory, therefore the 
language used must be efficient to meet the system resource constraints. 

 Programming embedded systems requires a low-level access to the hardware. For 
example, there might be a need to read from / write to particular memory locations. 
Such actions require appropriate accessing mechanisms, e.g. pointers.  

 The language must support the creation of flexible libraries, making it easy to re-use 
code components in various projects. It is also important that the developed software 
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should be easily ported and adapted to work on different processors with minimal 
changes. 

 The language must be widely used in order to ensure that the developer can continue to 
recruit experienced professional programmers, and to guarantee that the existing 
programmers can have access to information sources (such as books, manuals, 
websites) for examples of good design and programming practices. 

Of course, there is no perfect choice of programming language. However, the chosen 
language is required to be well-defined, efficient, supports low-level access to hardware, 
and available for the platform on which it is intended to be used. Against all of these factors, 
“C” language scores well, hence it turns out to be the most appropriate language to 
implement software for low-cost resource-constrained embedded systems. Pont (2003) 
stated that “C’s strengths for embedded system greatly outweigh its weaknesses. It may not be an 
ideal language for developing embedded systems, but it is unlikely that a ‘perfect’ language will be 
created”. 

7. The “C” programming language 

In his famous book “Programming Embedded Systems in “C” and C++”, Michael Barr 
(1999) emphasized that “C” language has been a constant factor across all embedded 
software development due to the following advantages: 

 It is small and easy to learn.  

 Its compilers are available for almost every processor in use today. 

 There are so many experienced “C” programmers around the world. 

 It is a hardware-independent programming language, a feature which allows the 
programmer to concentrate only on the algorithm rather than on the architecture of the 
processor on which the program will be running. 

Despite this, Barr highlighted that the key advantage of “C” which made it the favorite 
choice for many embedded programmers is its low-level nature that provides the 
programmer with the ability to interact easily with the underlying hardware without 
sacrificing the benefits of using high-level programming.  

In (Grogono, 1999), it was declared that “C” is based on a small number of primitive 
concepts, therefore it is an easy language to learn and program by both skilled and unskilled 
programmers. Moreover, Grogono stated that “C” can be easily compiled to produce 
efficient object code. 

In a more recent publication, Pont (2002) stated that “C’s strengths for embedded system greatly 
outweigh its weaknesses. It may not be an ideal language for developing embedded systems, but it is 
unlikely that a ‘perfect’ language will be created”. According to (Pont, 2002, 2003), the key 
features of the “C” language can be summarized as follows. 

 It is a mid-level language with both high-level features (such as support for functions 
and modules) and low-level features (such as access to hardware via pointers).  

 It is very efficient, popular and well understood even by desktop developers who 
programmed on C++ or Java.  

 It has well-proven compilers available nowadays for every embedded processor (e.g. 8-, 
16-, 32-bit or more).  
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 Books, training courses, code examples and websites that discuss the use of the 
language are all widely available. 

In (Jones, 2002), it was noted that features such as easy access to hardware, low memory 
requirements, and efficient run-time performance make the “C” language popular and 
foremost among other languages. In (Brosgol, 2003), it was made clear that “C” is the typical 
choice for programming embedded applications as it is processor-independent, has low-
level features, can be implemented on any architecture, has reasonable run-time 
performance, is an international standard, and is familiar to almost all embedded systems 
programmers. Fisher et al. (2004) emphasized that, in addition to portability and low-level 
features of the language, C structured programming drives embedded programmers to 
choose “C” language for their designs. Moreover, it has been clearly noted that “C” cannot 
be competed in producing a compact, efficient code for almost all processors used today 
(Ciocarlie & Simon, 2007). 

Furthermore, since “C” was recognized as the de facto language for coding embedded 

systems including those which are safety-related (Jones, 2002; Pont, 2002; Walls, 2005), there 

have been attempts to make “C” a standard language for such applications by improving its 

safety characteristics rather than promoting the use of safer languages that are less popular 

(such as Ada). For example, The UK-based Motor Industry Software Reliability Association 

(MISRA) has produced a set of guidelines (and rules) for the use of “C” language in safety-

critical software: such guidelines are well known as “MISRA C”. For more details, see 

(Jones, 2002). 

8. Why does “C” outperform other languages? 

When comparing “C” to other alternative languages such as C++ or Ada, the following 

observations have been made. C++ is a good alternative to “C” as it provides better data 

abstraction and offers a better O-O programming style, but some of its features may cause 

degradation in program efficiency (Barr, 1999). Also, such a new generation O-O language is 

not readily available for the small embedded systems, primarily because of the overheads 

inherent in the O-O approach, e.g. CPU-time overhead (Pont, 2003). 

Despite that Ada was a leading language that provided full support for concurrent and real-
time programming, it has not gained much popularity (Brosgol, 2003) and has rarely been 
used outside the areas related to defense and aerospace applications (Barr, 1999; Ciocarlie & 
Simon, 2007). Unlike C, not many programmers nowadays are experienced in Ada, therefore 
only a small number of embedded systems are currently developed using this language 

(Ciocarlie & Simon, 2007). In addition, despite their approved efficiency, Ada compilers are 
not widely available for small embedded microcontrollers and usually need hard work to 
accept the program; especially by new programmers (Dewar, 2006). Indeed, both Ada and 
C++ have too large demand on low-cost embedded systems resources (e.g. memory 
requirements) and therefore cannot be suitable languages for such applications1 (Walls, 2005). 

                                                 
1 However, despite the indicated limitations of Ada, there has been a great deal of work on assessing a 
new version of Ada language (i.e. Ada-2005) to widen its application domain (see Burns, 2006; Taft et al., 
2007). It has been noted that Ada-2005 can have the potential to overwhelm the use of “C” and its 
descendants in embedded systems programming (Brosgol and Ruiz, 2007). 
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In a survey carried out by Embedded Systems Design (ESD) in 2006, it was shown that the 
majority of existing and future embedded projects to which the survey applied were 
programmed (and likely to be programmed) in C. In particular, the results show that for 
2006 projects, 51% were programmed in C, 30% in C++, and less than 5% were programmed 
in Ada. The survey shows that 47% of the embedded programmers were likely to continue 
to use “C” in their next projects. See Fig. 1 for further details. 

 

Fig. 1. Programming languages used in embedded system projects surveyed by ESD in 2006. 
The figure is derived from the data provided in (Nahas, 2008). 

9. Using “C” to implement software for real-time embedded systems 

Since “C” remains the most popular means for developing software in real-time embedded 
systems, it has been extensively used in the implementation of real-time schedulers and 
operating systems for embedded applications. In general, “C” was adopted in the software 
development of almost all operating systems (including RTOSs) in which schedulers are the 
core components (Laplante, 2004). In Michael Barr’s book on embedded systems 
programming (i.e. Barr, 1999), it was noted that “C” is the main focus of any book about 
embedded programming. Therefore, most of the sample codes presented in Barr’s book – for 
both schedulers and operating systems – were written in “C” and the key focus of the 
discussion was on how to use “C” language for ‘in-house’ embedded software development. 
However, some of the example code presented later in the book was written in C++ while 
Assembly language was avoided as much as possible. In (Barr & Massa, 2006), possible 
ways for implementing the eCos and the Embedded Linux, as a small and a large open-
source operating systems (respectively), in “C” language were discussed. Other books 
which discuss the use of “C” language in the software implementation of real-time 
embedded systems include (Ganssle, 1992; Brown, 1994; Sickle, 1997; Zurell, 2000; Labrosse , 
2000; Samek, 2002; Barnett et al., 2003; Laplante, 2004). 
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More specifically, using “C” language to implement the software code for particular 
scheduling algorithms is quite common. For example, Mooney et al. (1997) described a 
strategy for implementing a dynamic run-time scheduler using both hardware and software 
components: the software part was implemented using “C” language. Kravetz & Franke 
(2001) described an alternative implementation of the Linux operating system scheduler 
using “C” programming. It was emphasized that the new implementation can maintain the 
existing scheduler behavior / semantics with very little changes in the existing code. 

Rao et al. (2008) discussed the implementation of a new pre-emptive scheduler framework 
using “C” language. The study basically reviewed and extracted the positive characteristics 
of existing pre-emptive algorithms (e.g. rate monotonic, EDF and LLF) to implement a new 
robust, fully pre-emptive real-time scheduler aimed at providing better performance in 
terms of timing and resource utilization. 

Researchers of the Embedded Systems Laboratory (ESL), University of Leicester, UK have 

been greatly concerned with developing techniques and tools to support the design and 

implementation of reliable embedded systems, mainly using “C” programming language. 

An early work in this area was carried out by Pont (2001) which described techniques for 

implementing Time-Triggered Co-operative (TTC) architectures using a comprehensive set 

of “software design patterns” written in “C” language. The resulting “pattern language” 

was referred to as “PTTES2 Collection” which contained more than seventy different 

patterns. As experience in this area has grown, this pattern collection has expanded and 

subsequently been revised in a series of ESL publications (e.g. Pont & Ong, 2003; Pont & 

Mwelwa, 2003; Mwelwa et al., 2003; Mwelwa & Pont, 2003; Pont et al., 2003; Pont & Banner, 

2004; Mwelwa et al., 2004; Kurian & Pont, 2005; Kurian & Pont, 2006b; Pont et al., 2006; 

Wang et al., 2007, Kurian & Pont, 2007).  

In (Nahas et al., 2004), a low-jitter TTC scheduler framework was described using “C” 
language. Phatrapornnant and Pont (2004a, 2004b) looked at ways for implementing low-
power TTC schedulers by applying “dynamic voltage scaling” (DVS) algorithm programmed 
in “C” language. Moreover, Hughes & Pont (2008) described an implementation of TTC 
schedulers – in “C” language – with a wide range of “task guardian” mechanisms that aimed 
to reduce the impact of a task-overrun problem on the real-time performance of a TTC system. 
On the other hand, various ways in which Time-Triggered Hybrid (TTH) scheduler can be 
implemented in practice using “C” have been described in (Pont, 2001; Maaita & Pont, 2005; 
Hughes & Pont, 2008; Phatrapornnant, 2007). The ESL group has also been involved in 
creating software platforms for distributed embedded systems in which Shared-Clock (S-C) 
scheduling protocols are employed to achieve time-triggered operation over standard network 
protocols. All different S-C schedulers were implemented using “C” (for further details, see 
Pont, 2001; Ayavoo et al., 2007). 

10. Conclusions 

Selecting a suitable programming language is a key aspect in the success of the software 
development process. It has been shown that there is no specific method for selecting an 
appropriate programming language for the development of a specific project. However, the 

                                                 
2 PTTES stands for Patterns for Time-Triggered Embedded Systems. 
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accumulation of experience along with subjective judgment enables software developers to 
make intelligent choices of programming languages for different application types. 

Embedded software developers utilize different programming languages such as: Assembly, 
Ada, C, and C++. We have demonstrated that C is the most dominant programming language 
for embedded systems development. Although other languages may be winning ground when 
it comes to usage, C remains the de facto language for developing resource-constrained 
embedded systems which comprise a large portion of today’s embedded applications. 
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